Lightwave Logic demos prototype silicon organic hybrid modulator

Oct. 15, 2013
Lightwave Logic, Inc. (OTCQB: LWLG) says it has successfully fabricated and operated a slot waveguide optical modulator based on its proprietary silicon organic hybrid (SOH) technology. This first-generation device has achieved greater electro-optical activity and dramatically lower drive voltage than industry-standard modulators based on inorganic materials, the company claims.

Lightwave Logic, Inc. (OTCQB: LWLG) says it has successfully fabricated and operated a slot waveguide optical modulator based on its proprietary silicon organic hybrid (SOH) technology. This first-generation device has achieved greater electro-optical activity and dramatically lower drive voltage than industry-standard modulators based on inorganic materials, the company claims.

SOH technology combines the efficiency of silicon photonics with the power and versatility of organic nonlinear electro-optical materials, Lightwave Logic asserts. In an SOH modulator, the optical signal is guided by a silicon waveguide structure with an organic polymer cladding layer above the waveguide to provide the electro-optic effect.

The device, developed and fabricated by Lightwave Logic's chemists and material system with a third-party research group the company did not identify, uses an existing modulator structure with one of Lightwave's proprietary electro-optic polymer material systems as the enabling material layer.

Lou Bintz, Lightwave Logic's vice president of product development, said, "The very short device length opens the door to extremely high modulation speeds and integrated optical circuit architectures. We are vigorously pursuing our chemistry development and fully expect accelerating improvement in our proprietary electro-optic polymer thin-film products."

Tom Zelibor, chairman and chief executive officer of Lightwave Logic added, "These initial results constitute a truly significant event for our company as it proves that our materials can work in photonic devices. Importantly, this prototype represents a solid starting point from which we continue to improve performance characteristics.

For more information on optical components and suppliers, visit the Lightwave Buyers Guide.

Sponsored Recommendations

Coherent Routing and Optical Transport – Getting Under the Covers

April 11, 2024
Join us as we delve into the symbiotic relationship between IPoDWDM and cutting-edge optical transport innovations, revolutionizing the landscape of data transmission.

Scaling Moore’s Law and The Role of Integrated Photonics

April 8, 2024
Intel presents its perspective on how photonic integration can enable similar performance scaling as Moore’s Law for package I/O with higher data throughput and lower energy consumption...

Data Center Network Advances

April 2, 2024
Lightwave’s latest on-topic eBook, which AFL and Henkel sponsor, will address advances in data center technology. The eBook looks at various topics, ranging...

Constructing Fiber Networks: The Value of Solutions

March 20, 2024
In designing and provisioning a fiber network, it’s important to think of it as more than a collection of parts. In this webinar, AFL’s Josh Simer will show how a solution mindset...