Fujitsu unveils 100G multimode QSFP28 active optical cable

March 6, 2014
Fujitsu Components Ltd. will exhibit its newly developed, quad small form-factor pluggable (QSFP28) active optical cable (AOC) for high-speed data transmission in booth #3445 at OFC 2014 March 9-13, 2014 in San Francisco. The company claims it is the world's first 100-Gbps AOC based on 4x25-Gbps channels over multimode fiber.

Fujitsu Components Ltd. will exhibit its newly developed, quad small form-factor pluggable (QSFP28) active optical cable (AOC) for high-speed data transmission in booth #3445 at OFC 2014 March 9-13, 2014 in San Francisco. The company claims it is the world's first 100-Gbps AOC based on 4x25-Gbps channels over multimode fiber.

The AOC supports InfiniBand EDR and 100 Gigabit Ethernet (100GBase-SR4) transmission speeds and is best for close-range, high-speed transmission in data center networks, such as between servers and server racks, Fujitsu says.

The QSFP28 AOC leverages a cost-efficient, four-channel optical transceiver that conforms to the QSFP28 multi-source agreement, the company continues. It is capable of delivering 100-Gbps data rates over four lanes of 25 Gbps with a reach of up to 100 m, maximum.

The QSFP28 AOC uses two new technologies developed by Fujitsu Laboratories Ltd.: overdrive technology and a next-generation high-speed optical engine structure.

The overdrive technology enables 25-Gbps transmission speeds using existing 14 Gbps vertical-cavity surface-emitting lasers (VCSELs) by implementing a three-tap finite impulse response (FIR) pre-emphasis signal on the VCSEL driver. This is a modulation technique that increases the amplitude of certain frequencies in the signal in response to the attenuation feature at high frequency, allowing the VCSEL to run faster than normal.

The optical engine has three layers consisting of an optical waveguide sheet, a lens sheet, and a flexible printed circuit (FPC) board. The lens sheet is made with nano-imprint technology, and optical devices are flip-chip mounted on the board. Stacking each layer on the optical waveguide using passive alignment enables further cost reduction.

To ensure electric signal transmission speed, Fujitsu’s FCN-152J high-speed FPC connector series is used for connecting to the optical engine.

Evaluation samples are available now, with engineering samples available in June 2014.

For more information on optical transceivers and suppliers, visit the Lightwave Buyers Guide.

Sponsored Recommendations

Data Center Network Advances

April 2, 2024
Lightwave’s latest on-topic eBook, which AFL and Henkel sponsor, will address advances in data center technology. The eBook looks at various topics, ranging...

Coherent Routing and Optical Transport – Getting Under the Covers

April 11, 2024
Join us as we delve into the symbiotic relationship between IPoDWDM and cutting-edge optical transport innovations, revolutionizing the landscape of data transmission.

From 100G to 1.6T: Navigating Timing in the New Era of High-Speed Optical Networks

Feb. 19, 2024
Discover the dynamic landscape of hyperscale data centers as they embrace accelerated AI/ML growth, propelling a transition from 100G to 400G and even 800G optical connectivity...

Scaling Moore’s Law and The Role of Integrated Photonics

April 8, 2024
Intel presents its perspective on how photonic integration can enable similar performance scaling as Moore’s Law for package I/O with higher data throughput and lower energy consumption...