TU/e, CREOL researchers reach 255 Tbps over multi-core fiber

Oct. 30, 2014
Researchers at Eindhoven University of Technology (TU/e) in the Netherlands and The College of Optics and Photonics at the University of Central Florida (CREOL) report in the journal Nature Photonics the successful transmission of 255 Tbps over multicore optical fiber.

Researchers at Eindhoven University of Technology (TU/e) in the Netherlands and The College of Optics and Photonics at the University of Central Florida (CREOL) report in the journal Nature Photonics the successful transmission of 255 Tbps over multicore optical fiber.

The new fiber has seven different cores through which light can travel, and each core can support three different spatial modes via spatial division multiplexing (SDM).

Researchers are exploring SDM as a promising way to increase the capacity and reduce the costs of transmission systems in the future – when the capacity of fibers in the ground has been exhausted.

The researchers described the innovation as "going from a one-way road to a seven-lane highway," adding that the use of multiple spatial modes is "as if three cars can drive on top of each other in the same lane." Combining those two methods increases the transmission capacity of the fiber by a factor of 21 compared to standard optical fibers that have only one singlemode core.

"This new type of fiber could be an answer to mitigating the impending optical transmission capacity crunch caused by the increasing bandwidth demand," the researchers said, via a press release.

This isn't the highest capacity reported to date over a single fiber. Last year, researchers from NEC and Corning claimed 1.05 Pbps transmission over a single optical fiber containing 12 singlemode and two multimode cores (see "NEC, Corning claim petabit transmission over a single optical fiber"). The Europe's MODE-GAP program, in which the COBRA Institute at Technische Universiteit Eindhoven is active, is also looking at SDM and various new fiber types (see "MODE-GAP project makes progress in mode-division multiplexing" and "Coriant transmits 57.6 Tbps via hollow core fiber, space-division multiplexing").

The Dutch and U.S. researchers believe their particular fiber design looks promising. "At less than 200 microns in diameter, this fiber does not take noticeably more space than conventional fibers already deployed," said Dr. Chigo Okonkwo, an assistant professor in the Electro-Optical Communications (ECO) research group at TU/e.

"These remarkable results definitely give the possibility to achieve petabit-per-second transmission, which is the focus of the European Commission in the coming seven-year Horizon 2020 research program," he added.

For more information on high-speed transmission systems and suppliers, visit the Lightwave Buyer's Guide.

Sponsored Recommendations

Coherent Routing and Optical Transport – Getting Under the Covers

April 11, 2024
Join us as we delve into the symbiotic relationship between IPoDWDM and cutting-edge optical transport innovations, revolutionizing the landscape of data transmission.

Scaling Moore’s Law and The Role of Integrated Photonics

April 8, 2024
Intel presents its perspective on how photonic integration can enable similar performance scaling as Moore’s Law for package I/O with higher data throughput and lower energy consumption...

Data Center Network Advances

April 2, 2024
Lightwave’s latest on-topic eBook, which AFL and Henkel sponsor, will address advances in data center technology. The eBook looks at various topics, ranging...

Constructing Fiber Networks: The Value of Solutions

March 20, 2024
In designing and provisioning a fiber network, it’s important to think of it as more than a collection of parts. In this webinar, AFL’s Josh Simer will show how a solution mindset...