New CWDM8 MSA specifications cover 400 Gbps over 2 km

Nov. 21, 2017
Members of the CWDM8 Multisource Agreement (MSA) have released a technical specification that covers 400-Gbps optical transmission at distances up to 2 km over duplex single-mode fiber. The group says a companion specification for 400-Gbps application of 10 km should be ready by the end of the year.

Members of the CWDM8 Multisource Agreement (MSA) have released a technical specification that covers 400-Gbps optical transmission at distances up to 2 km over duplex single-mode fiber. The group says a companion specification for 400-Gbps application of 10 km should be ready by the end of the year.

The CWDM8 MSA announced its formation this past September with an eye toward addressing 400-Gbps applications using NRZ modulation on the optical end while maintaining compatibility with 50-Gbps per lane electrical interfaces such as those the P302.3bs 400 Gigabit Ethernet Task Force envisions (see "CWDM8 MSA targets 400G at 2 km, 10 km via NRZ wavelengths"). The MSA specifications could be applied to QSFP-DD, OSFP, and COBO optical transceivers and modules.

The use of NRZ for the optical transmission contrasts with the upcoming 400 Gigabit Ethernet specifications, which are expected to use PAM4 in single-mode fiber applications when the Task Force completes its work, a milestone expected to be reached by the end of this year. The MSA asserts the use of NRZ modulation, already common among data center transceivers, will enable compliant modules to reach the market more quickly than those based on PAM4 or other higher-order modulation formats.

Members of the CWDM8 MSA include Accton, Applied Optoelectronics, Barefoot Networks, Credo Semiconductor, Hisense, Innovium, Intel, MACOM, Mellanox, Neophotonics, New H3C Technologies, and Rockley Photonics. All but Applied Optoeletronics and New H3C Technologies are founding members.

The specification is available for download at www.cwdm8-msa.org.

For related articles, visit the Optical Technologies Topic Center.

For more information on optical modules and suppliers, visit the Lightwave Buyer's Guide.

Sponsored Recommendations

Coherent Routing and Optical Transport – Getting Under the Covers

April 11, 2024
Join us as we delve into the symbiotic relationship between IPoDWDM and cutting-edge optical transport innovations, revolutionizing the landscape of data transmission.

Scaling Moore’s Law and The Role of Integrated Photonics

April 8, 2024
Intel presents its perspective on how photonic integration can enable similar performance scaling as Moore’s Law for package I/O with higher data throughput and lower energy consumption...

Constructing Fiber Networks: The Value of Solutions

March 20, 2024
In designing and provisioning a fiber network, it’s important to think of it as more than a collection of parts. In this webinar, AFL’s Josh Simer will show how a solution mindset...

Moving to 800G & Beyond

Jan. 27, 2023
Service provider and hyperscale data center network operators are beginning to deploy 800G transmission capabilities – but are using different technologies to do so. The higher...