Wavelength-stabilized laser modules are now plug-and-play - Lightwave

Wavelength-stabilized laser modules are now plug-and-play

At Alcatel, engineers have developed a laser that can be mass-produced while still providing customized wavelengths that are stable with temperature. This is achieved by using a single basic laser with an interchangeable external cavity to provide the amplification and set the wavelength. So far, researchers have demonstrated an average output power of 1 mW over four different wavelengths in the C-band, and a modulation speed of 622 Mbit/s. With optimization of the electrical lines, researchers said, the laser should work at 2.5 Gbit/s.1

Standard indium phosphide (InP) lasers are coupled into a lensed fiber. These components are held in a silicon mount that includes a V-groove so that fibers can be aligned passively, and then packaged in an MT-connector. The other half of the system is a fiber Bragg grating that controls the emitted wavelength.

To give the system its stability with temperature, the team used two materials with different thermal-expansion coefficients: as one expands, the other contracts, thus keeping the fiber Bragg wavelength relatively constant. This doesn't work to 100%: the thermal behavior of the two materials does not quite match perfectly (see figure). But the mode-hopping and wavelength changes that result do not significantly add to the overall wavelength variation, which is less than 50 pm.

The Alcatel team showed that the generic InP device could be used to produce a consistent output at 1530, 1537, 1550, and 1560 nm. For all of these, the threshold current was below 9 mA, and the efficiency above 0.11 W/A. In other experiments, researchers were also able to show that, for temperatures from 0°C to 70°C, the transmission penalty compared to the conventional device is just 0.5 dB (over 90 km and at 6.22 Mbit/s) for the four wavelengths.

For more information contact Arnaud Leroy at arnaud.leroy@alcatel.fr.

Sunny Bains

REFERENCE

  1. A. Leroy et al., Elect. Lett. 37 (16) 1012 (Aug. 2, 2001).


Get the Lightwave Newsletter Delivered to Your Inbox

Subscribe to email newsletter today at no cost and receive the latest information on


  • Service Providers
  • Datacom/Data Center
  • Enabling Technologies
  • Network Design

Post a Comment

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account.

Related Companies

M/A-COM Technology Solutions

Company Description:  MACOM is a leading provider of high performance analog semiconductor solutions for use in wireless and wireline applications acros...

PacketLight Networks

Offers a suite of Leading DWDM/CWDM solutions for optical fiber communication, transport of data, storage, voice and video applications, over dark fiber & WD...

Discovery Semiconductors Inc

Discovery Semiconductors, Inc. is an industry leader in manufacturing ultrafast, high optical power handling InGaAs photodetectors, RF over fiber optical rec...

Related Products

MAOM-003404 is a quad channel 32 Gbps differential modulator driver IC

for 100G coherent transponders in CFP and CFP2 form factors. Lowest Power Dissipation Quad-Channel Differe...

MAOM-003405 is a quad channel 32 Gbps modulator driver IC

meets the stringent CFP2 input voltage requirements, while the single-ended output voltage of up to 6.5Vpp ...

MATA-03803A - transimpedance amplifier

32 Gbps Dual-Channel Differential Input Linear TIA with AGC for 100G PM-QPSK Rx

Most Viewed

Webcasts

Module Design Trends

( 08/05/2015 / 01:00 PM Eastern Daylight Time / 12:00 PM Central Daylight Time / 10:00 AM Pacific Daylight Time / 17:00 GMT )
Sponsored by

Advances in FTTx

Sponsored by

Characterizing Coherent Optical Systems for 400G & Beyond

Sponsored by

Social Activity