Lightwave Logic demos prototype silicon organic hybrid modulator

Oct. 15, 2013
Lightwave Logic, Inc. (OTCQB: LWLG) says it has successfully fabricated and operated a slot waveguide optical modulator based on its proprietary silicon organic hybrid (SOH) technology. This first-generation device has achieved greater electro-optical activity and dramatically lower drive voltage than industry-standard modulators based on inorganic materials, the company claims.

Lightwave Logic, Inc. (OTCQB: LWLG) says it has successfully fabricated and operated a slot waveguide optical modulator based on its proprietary silicon organic hybrid (SOH) technology. This first-generation device has achieved greater electro-optical activity and dramatically lower drive voltage than industry-standard modulators based on inorganic materials, the company claims.

SOH technology combines the efficiency of silicon photonics with the power and versatility of organic nonlinear electro-optical materials, Lightwave Logic asserts. In an SOH modulator, the optical signal is guided by a silicon waveguide structure with an organic polymer cladding layer above the waveguide to provide the electro-optic effect.

The device, developed and fabricated by Lightwave Logic's chemists and material system with a third-party research group the company did not identify, uses an existing modulator structure with one of Lightwave's proprietary electro-optic polymer material systems as the enabling material layer.

Lou Bintz, Lightwave Logic's vice president of product development, said, "The very short device length opens the door to extremely high modulation speeds and integrated optical circuit architectures. We are vigorously pursuing our chemistry development and fully expect accelerating improvement in our proprietary electro-optic polymer thin-film products."

Tom Zelibor, chairman and chief executive officer of Lightwave Logic added, "These initial results constitute a truly significant event for our company as it proves that our materials can work in photonic devices. Importantly, this prototype represents a solid starting point from which we continue to improve performance characteristics.

For more information on optical components and suppliers, visit the Lightwave Buyers Guide.

Sponsored Recommendations

New Optical Wavelength Service Trends

July 1, 2024
Discover how optical wavelength services are reshaping the telecom landscape, driven by rapid expansion and adoption of high-speed connections exceeding 100 Gbps, championed by...

ON TOPIC: Innovation in Optical Components

July 2, 2024
Lightwave’s latest on-topic eBook, sponsored by Anritsu, will address innovation in optical components. The eBook looks at various topics, including PCIe (Peripheral...

Data Center Interconnection

June 18, 2024
Join us for an interactive discussion on the growing data center interconnection market. Learn about the role of coherent pluggable optics, new connectivity technologies, and ...

The Pluggable Transceiver Revolution

May 30, 2024
Discover the revolution of pluggable transceivers in our upcoming webinar, where we delve into the advancements propelling 400G and 800G coherent optics. Learn how these innovations...