Micro QSFP subject of new optical transceiver MSA

Twelve companies from the optical module, electronics, systems, and user space have launced a new optical transceiver multi-source agreement (MSA). The Micro Quad Small-Form-Factor Pluggable (μQSFP) optical transceiver aims to provide better faceplate density by creating a transceiver about the width of an SFP, with an initial focus on data center applications.

Content Dam Lw En Articles 2015 08 Micro Qsfp Subject Of New Optical Transceiver Msa Leftcolumn Article Thumbnailimage File

Twelve companies from the optical module, electronics, systems, and user space have launced a new optical transceiver multi-source agreement (MSA). The Micro Quad Small-Form-Factor Pluggable (μQSFP) optical transceiver aims to provide better faceplate density by creating a transceiver about the width of an SFP, with an initial focus on data center applications.

Creation of the µQSFP MSA began earlier this year when TE Connectivity announced it was looking for partners to create a smaller alternative to QSFPs at the behest of at least one customer (likely Microsoft, judging by the quote the company provided in TE Connectivity's announcement; see "TE Connectivity seeks partners for new 100G optical transceiver MSA"). Joining TE Connectivity and Microsoft in the new MSA are Avago Technologies, Broadcom, Brocade, Cisco, Dell, Huawei, Intel, Juniper Networks, Lumentum (ex-JDSU), and Molex.

The µQSFP MSA members will target a device that will provide 33% better port density than a QSFP; the module likely will be about the width of an SFP, if slightly longer. Thermal management will be a key part of effort; the MSA already has a thermally enhanced housing in mind to support use in a variety of applications, including data center interconnect, storage connectivity, and high-performance computing. It will target both copper and fiber-optic cabling environments.

The MSA has set its sights on support of four electrical channels at 28 Gbps apiece. Support for 50-Gbps lanes may come in a future iteration.

Altogether, the specifications should enable the µQSFP to be used in 10 Gigabit Ethernet, 25 Gigabit Ethernet, 50 Gigabit Ethernet, and 100 Gigabit Ethernet applications.

"The steady march to higher speeds at maximum density will challenge existing form factors, particularly from a thermal management perspective," said Dale Murray, principal analyst for LightCounting Market Research via the MSA's press release. "Proliferation of form factors is also challenging. By taking a fresh, holistic approach to a next-generation form factor covering both single and multiple lanes, this new MSA could provide a path to a broad solution."

The MSA members will now get to work on the specifications. The scope of work includes electrical, mechanical, and management interfaces that will include electrical connector, guide rail (cage), front panel and host PCB layout, and optical connector options. Overcoming the thermal, signal integrity, electromagnetic, and electrostatic challenges high-density applications pose will be essential to the group's success.

More information on the MSA's work can be found at its website, http://www.microQSFP-MSA.com.

For more information on optical transceivers and suppliers, visit the Lightwave Buyer's Guide.

More in Transmission