Optimizing 1.55-µm VCSELs yields thinner DBRs

Nov. 1, 2002

Vertical-cavity surface-emitting lasers (VCSELs) emitting at telecom wavelengths offer low threshold currents, single-mode operation, high coupling efficiencies into fiber, and high-speed modulation. Maria Linnick and Aris Christou at University of Maryland (College Park) reported results from an optimized 1.55-µm VCSEL design at the recent IEEE LEOS Summer Topical Meetings (Mont Tremblant, Quebec).1

The researchers sought materials with crystal lattices that match the InP substrate while offering a large index difference from InP. They chose to make their DBRs from alternating layers of Al0.05Ga0.43In0.53As and InP, which yields a refractive index difference of 0.63. The top (p-doped) DBR consists of 16 layers with an expected reflectivity of 97%, and the bottom (n-doped) DBR consists of 22 layers with an expected reflectivity of 99%.

Their design focuses on providing excellent performance while minimizing the number of layers that must be grown, which they expect to improve device reliability. They used MBE to grow a VCSEL with an unstrained multiple-quantum-well active layer, consisting of eight Ga0.43In0.57As0.92P0.08 wells, each 6 nm thick, separated by seven Ga0.23In0.77As0.5P0.5 barriers, each 9 nm thick. The quantum wells were located between cladding layers to place them at the peak of the electric field standing wave in order to achieve matched gain.

A 70-nm-thick layer of AlInAsP right next the cladding layers acts as the lowest layer of the p-doped DBR, and was selectively oxidized to form a 7-µm-diameter aperture. The oxide layer efficiently confines the charge carriers into the laser active region while the reduced refractive index of the oxide transversely confines the laser emission.

Average threshold current was 3 mA, threshold voltage was typically less than 2 V, and the power output exceeded 1 mW. The output spectrum showed a single mode at 1.54 µm. Contact Aris Christou at [email protected].

  1. M. Linnik and A. Christou, LEOS Summer Topical Meetings 2002, Invited paper WG2 (July 5–17, 2002).

Sponsored Recommendations

Coherent Routing and Optical Transport – Getting Under the Covers

April 11, 2024
Join us as we delve into the symbiotic relationship between IPoDWDM and cutting-edge optical transport innovations, revolutionizing the landscape of data transmission.

Advancing Data Center Interconnect

July 31, 2023
Large and hyperscale data center operators are seeing utility in Data Center Interconnect (DCI) to expand their layer two or local area networks across data centers. But the methods...

Scaling Moore’s Law and The Role of Integrated Photonics

April 8, 2024
Intel presents its perspective on how photonic integration can enable similar performance scaling as Moore’s Law for package I/O with higher data throughput and lower energy consumption...

Moving to 800G & Beyond

Jan. 27, 2023
Service provider and hyperscale data center network operators are beginning to deploy 800G transmission capabilities – but are using different technologies to do so. The higher...